CHARACTERISTICS # MAGNETIC DEFI FCTION TYPES | | | | |) | | | | | | | | | |--|---|---|------------------------------|---------------------------------------|----------|--|----------------------------------|---|----------------------|------------------------------|--------------------------------------|--| | | | | | | | | | | - | TYPICAL OPE | OPERATING CON | CONDITIONS | | JEDEC | OVERALL | FACEPLATE | DEFLECTION | OUTSIDE | FOCUSING | NO | JEDEC | JEDEC | ANONE | ACCEI FRATOR | NEGATIVE CIIT. | EDCIISING VOLTAGE | | TYPE
NO. | LENGTH
(Inches) | (See * below) | (Degrees) | (mmf) | METHOD | TRAP | BASING | NO. | VOLTAGE
(KV DC) | GRID VOLTAGE
(V DC) | OFF VOLTAGE
(V DC) | (V DC) or CUR-
RENT (MA DC) | | 3AKP
3HP
4BP
4CP | 6-3/8
9-13/16
13-1/8
11-1/4 | స్టలలల | 36° Offset
55
50
50 | None
None
100-500
100-500 | ZZZZ | 2222 | Spec. Coded
5AN
8ET
12G | Molded
B8-65
B8-65
B5-57 | 7
5
25
20 | 300
150
No Grid | 45-95
15-45
75-175
70-140 | -50 to 350 V
 | | SACP—
SAEP—
SAHP—
SAHP—A | 11-1/8 | S C C C R R R R R R R R R R R R R R R R | 22222 | None
None
None | 8888 | NN | 8EQ
8EQ
8EF | B8-65
B8-65
B8-65
B8-65 | 12
7
7 | 250
250
300
300 | 27-63
25-70
28-72
28-72 | -50 to 350 V
-50 to 350 V
-50 to 350 V
-50 to 350 V | | SAKP—
SALP—
SAUP—
SAXP | 12-9/16
7-1/4
12-1/2
10-5/8 | C Rd C Rd C Rd C Rd Rd C Rd | 53
53
53 | 100-500
None
100-500
None | ESSE | % % % % % % % % % % % % % % % % % % % | 126
90F
12C
12S | B5-57
B6-63
B5-57 | 30
8
25
14 | No Grid
200
300 | 80 to 140
50
40-100
28-72 | 250 MA
5200 V
AUTO | | 58CP
58NP
5CKP
5FP A | 10-5/8
16-5/8
11-1/8 | C C & & & & & & & & & & & & & & & & & & | 70
53
53 | None
None
None | MESM | 8888
8888 | 9DF
12M
12AM
5AN | E9-37
B6-63
B7-51
B8-65 | 8
14
20
6 | 300
1000
250 | 25-75
28-72
35 to 110
25-70 | 56-84 MA
-50 to 350 V
135 MA
75-102 MA | | 50P_A
5TP_
5WP_ | 11-1/8
11-3/4
11-7/16
14-3/8 | SSSSS | 53
50
40 | None
100-500
100-500
100-500 | ESSSE | 0000
0000 | 5AN
12C
12C
12C | 88-65
87-51
87-51
87-51 | 10
27
27
20 | 300
200
200
200 | 28 to 72
40-100
42-98
42-98 | 137 MA
6600 V MAX.
4700 V | | 7ABP
7ABP
7AIP
7BP | 13-1/4
13-1/4
19
13-1/4 | C Rd CA Rd C Rd C Rd | 50
50
53 | None
None
None | ESS | NN NN N | 12M
12M
12D
5AN | B6-63
B6-63
B6-63
B8-65 | 7
7
14
7 | 300
300
550
250 | 33-77
28-72
75-150
50 | -50 to 350 V
0 to 250 V
77 MA
99-135 MA | | 8 - 1 de E | 13-1/4
13-7/16
14-1/16
13 | 2222 | 52
20
20
20 | None
None
400-1500
500 Max. | AESA | No
No
Double
No | 5AN
8BQ
12C
12C | 88-65
88-65
87-51
85-57 | 7
6
6 | 250
250
250
250 | 25-70
25-68
25-65
28-72 | 99-135 MA
1200 V | | 71.P.—
74.P.—
74.P.— | 13-1/4
12-3/4
12-7/8
14-1/16 | CA Rd
CA Rd
CA Rd | 53
50
52
50 | None
None
None | ZZZZ | No
No
Single
No | 8EQ
12D
12D
12D | 88-65
85-57
85-57
85-57 | 12
7
8
9 | 250
250
300
250 | 27-63
27-63
28-72
27-63 | 0 to 250 V
105-140 MA
80 MA
80 MA | | 45 T T B 8 8 P P P P P P P P P P P P P P P P P | 14-1/16
13-1/8
10-7/16
11-7/16 | C Rd
CA Rd
G Re
GA Re | 90
90
90
90 | 100-500
None
250-350 | MESS | No
No
Single
Single | 12G
12Q
12AB
12D | B5-57
B6-63
B6-158
B5-57 | 20
10
8
16 | 200
200
300 | 63-147
23-53
22-51
35 to 72 | 195 MA
2200 V MAX.
-50 to 350 V
125 MA | | 9LP _ 9MP _ 10KP _ A _ 10NP | 14-31/32
17-1/2
17-5/8
17-5/8 | G R Rd G R Rd Rd Rd Rd | 55
55
50
52 | None
None
None
500-1500 | SSSS | No on o | 5AN
5AN
12D
12G | B8-65
B8-65
B7-51• B5-57
B5-57 | 7
6
9
18 | 250
250
250
No Grid | 60-100
25-75
27-63
62-125 |
105 MA (Approx.)
110 MA (Approx.) | | 109P
10SP
100P
A quot | 17-9/16
16-5/8
17-5/8
17-5/8 | C Rd CA Rd CA Rd CA Rd | 2022 | 100-500
None
None | ESSS™ | 0000
0000 | 12G
12Q
12M
12M | B5-57
B6-63
B6-63
B6-63 | 20
14
10
10 | 300 | 63-147
18-48
38-72
28-72 | 190 MA
1900 V
0 to 350 V
0 to 350 V | | 10VP
10WP
10WP A
12ABP | 17-5/8
16-15/16
16-15/16
18 | CA Rd
G Rd
GA Rd
G Rd | 50
50
55
55 | 500-2500
None
None
None | ESES | 0 0 0 0
N0 0 0 | 12N
12M
12M
12M | B5-57
B6-63
B6-63
B6-63 | 11
10
10
10 | 250
300
300
300 | 28-72
28-72
28-72
28-72 | 110 MA (Approx.)
0 to 350 V
0 to 350 V
0 to 350 V | | NEGATIVE
CUT-OFF | FOCUSING
VOLTAGE | ACCELERATOR
GRID VOLTAGE | POST ACCEL-
Erator volt- | D3 D4 | D1 D2 | 2 | 5 | BASE | JEDEC
BASING | AND SCREEN | LENGTH | TYPE | |---|-------------------------------------|---|-----------------------------|---|---------------------------------|--|-----------|--------------------------------------|----------------------------|---|---|---| | CONDITIONS | | TYPICAL OPERATING | (L | FACTOR | DEFLECTION FACTOR | DE | S | IFNEC | | CANCOLATE | | IEDEC | | ES | TYP | NO | | LE | L
U | | 0 | TA | 1051 | CTR | | Ш | | 95 MA (Approx.)
0 to 350 V
105 MA (Approx.)
-50 to 350 V
105 MA | 28-72
28-72
33-77
38-72 | 000
000
000
000
000
000
000 | 16
12
12
16 | 85-57
86-63
85-57
86-63
85-57 | 120
120
120
12N
12M | Single
Single
No
No
Single | ZSZSZ | None
None
None
None | 70
70
70
90 | G C C Re Re G R M M R R M M M M M M M M M M M M M M | 23
23
22-1/16
22-1/16
23-1/16 | 216P—
216P—
226P—
220P—
276P— | | 92 MA
0 to 350 V
0 to 350 V
95 MA (Approx.) | 27-63
27-63
33-77
28-72 | 300
250
300
300 | 12
14
14 | 85-57
86-63
86-63
85-57 | | No
No
Single
Single | MRSM | None
None
750-1500
750-1500 | 70
70
70
70
70 | GA Re
GA Re
G Cy Re
G Cy Re | 19-3/16
19-1/4
19-3/16
19-3/16 | 1740P178CP171P170P | | 100 to 200 V
95 MA
95 MA
95 MA | 32 to 70
38-72
27-63
27-63 | 300
300
250
250 | 12
12
12 | 86-63
85-57
85-57
85-57 | 12M
12N
12D
12N | No
Double
Double
Double | MMM | None
750-2000
None
750-1500 | 53
70
70 | | 22-1/16
22-1/4
17-3/4
17-3/4 | 164KP16WP16WP | | 105 MA (Approx.)
105 MA (Approx.)
0 to 350 V
0 to 350 V | 27-63
27-63
28-72
27-63 | 250
250
300
250 | 9
9 2 2 2 1 2 9 | 85-57
85-57
86-63
86-63 | 120
120
121
121 | 2222 | SESS | None
None
80-1200
None | 55
55
70 | SA RG
SA RG | 18-3/4
18-3/4
13-3/16
19-5/32 | 12SP_B
12SP_D
14WP_
16AFP_ | | 99-135 MA
75-102 MA
110 MA (Approx.)
105 MA (Approx.) | 22-66
22-66
27-63
27-63 | 250
250
250
250 | 7
7
111
9 | B8-65
B8-65
B5-57
B5-57 | 5AN
5AN
12N
12D | 2000 | 2222 | None
None
500-2500
None | 50
54
55 | | 19-5/8
19-5/8
17-5/8
18-3/4 | 120P_A
120P_A
12KP_A | | 0 to 350 V
110 MA (Approx.)
0 to 350 V
75-102 MA | 28-72
28-72
28-72
22-66 | 300
500
500
250 | 10
12
12
7 | 86-63
85-57
86-63
88-65 | 12M
12D
12M
5AN | 0 0 0 0
0 0 0 0 | ES
WES | None
None
None
None | 55
55
55 | GA Rd
G Rd
GA Rd
C Rd | 18-5/16
18-5/16
18-5/16
20-3/4 | 12ABP_A
12AFP_A
12AGP_A | | | ITIONS | NEGATIVE
CUT-OFF
(V DC) | |------------------------------------|------------------|--| | | ATING CONDITIONS | FOCUSING
VOLTAGE
(V DC) | | | YPICAL OPERATING | ACCELERATOR
GRID VOLTAGE
(V DC) | | | TY | POST ACCEL-
ERATOR VOLT-
AGE (KV DC) | | 「「「「「」 | IN FACTOR | D3 D4
(V DC/Inch) | | | DEFLECTION | 01 D2
(V DC/Inch) | | 2 | ON | OF | | 1 | IENEC | BASE NO. | | THE RESERVE OF THE PERSON NAMED IN | | | JEDEC BASING LENGTH (Inches) 2000 300 240-350 198 198 148-200 445 148-181 148-181 148-181 148-199 148-181 148-181 148-189 148-189 123-70 123-181 189-189 180-368 180-369 133-183 B12-43 Med. 7 Pin Med. 7 Pin B14-38 B12-43 B12-43 B12-37 B12-43 B 3 4-1/16 7-5/8 11-1/2 11-1/2 10-3/4 10-3 | 45.75 | 30-60
34-56
34-56
34-56 | 34-56
34-56
33-55
20-60 | 20-60
45-75
35-65
50-80 | 50-80
82-85
30-90
30-90 | 45.75
60-85
24-56
15-45 | 20-60
22.2-51.8
45-105
30-90 | 30-90
16.5-49.5
15-45
30-90 | 30-90
30-90
45-75
90 Max. | 20-60
30-90
45-75
45-75 | 45-135
75-124
87-112
45-75 | 105-175
36-84
72-168
84 Max. | 22.5-67.5
50-90
24-56
60-140 | 60-140
150-225
30-90
65-195 | 45-135
40-120
40-120 | |---------|--|--|--|---|--|--|---|--|--|---|--|--|---|---| | 400-684 | 400-900
0-300
0-300
0-300 | 0-300
0-700
500-730
310 | 450
400-630
600-900
180-590 | 180-590
190-565
575
575 | 400-690
225-670
425
310 | 450
260
333-630
500 | 376-633
250
337
528 | 363-695
363-695
363-695
340-640 | 315-562
362-695
362-695
362-695 | 541-1040
950-1225
595-1020
380-620 | 2000-2950
810-1200
1620-2400
800-1200 | 440-750
450-700
540-800
1250-1850 | 1200-1800
1750-2500
1250
1143 | 1150
1000
1000 | | 2000 | 750
2500
2500
2500 | 2500
6000
2300
1500 | 2000
2000
2750
1670 | 1670
1900
2000
2000 | 2000
1850
2000
1500 | 2000
1000
2000
2000 | 2000
1000
1500
2000 | 2000
2000
2000
2000
2000 | 2000
2000
2000
2000 | 3000
4000
3000
2000 | 8000
3000
3000
3000 | 2000
2000
2000
5000 | 5000
7500
4000
4000 | 5000
4000
4000 | | 4 | 6
None
None | None
10.3
None | None
14
13.25
10 | 10
4
4
4 | 4
6
None
None | None
2
4
4 | 4
None
None
20 | 20
4
4
None | None
20
12
12 | 12
9
4 | None
None
None | 4
4
4
None | None
8
8
6 | None
8
8 | | 49-60 | 230
20-25
31.5-38.5
31.5-38.5 | 31.5-38.5
34.42
113-128
57 | 76
111-133
110-138
28.4-34.8 | 15.18.3
15.5-19
74
78 | 70-86
22.6-28
72
57.8 | 76
96
77-115
90 | 72-108
60
76
131-197 | 131-197
62-94
70-86
46-62 | 63-89
46-68
42-52
42-52 | 36-54
105-130
84-126
67-83 | 170-186
75-102
150-204
75-102 | 59-94
28-45
49-68
100-135 | 85-115
130-180
125
101 | 125
130
110 | | 54-66 | 230
40-50
40-50
40-50 | 45-55
94-116
113-128
63 | 84
130-160
130-160
70-86 | 70-86
48.3-58.5
92
92 | 83-101
48.3-61
36
63.5 | 84
96
77-115
103 | 83-124
66
84
140-210 | 140-210
74-110
83-101
56-77 | 70-98
140-210
130-159
130-159 | 108-162
112-138
86-130
81-101 | 175-195
93-123
186-246
93-123 | 63-105
60-90
58-81
125-165 | 110-150
140-190
110
108 | 95
130
110 | | 2 | | 11112 | 1
1 | | | | | 12221 | | T.C.C.T | пппп | പപവവ | 111111111111111111111111111111111111111 | | | 612-37 | 812-37
812-37
812-37 | B12-37
B12-37
B12-37
Wafer Mag. | Med. Mag. 11 Pin
B12-37
B12-37
B12-37 | 812-37
812-37
812-37
812-37 | 812-37
812-37
11 Pin Sleeve
11 Pin Sleeve | Med. Mag.
11 Pin Mag.
Med. Mag.
Med. Mag. | Med. Mag.
Large 7 Pin
11 Pin Sleeve
B12-37 | 812-37
812-37
812-37
812-37
812-43 | Med. Mag.
B12-37
B12-37
B12-37 | 825-139
825-139
825-139
812-37 | 22 Pin Collar
B12-37
B12-37
B12-37 | 22 Pin Collar
B25-139
B12-37
B12-37 | 812-37
812-37
812-37
812-37 | 11 Pin Sleeve
12 Pin Per.
12 Pin Per. | | Spec. | Spec.
14U
14G
14G | Spec.
14V
14P
11A | 11N
14AB
14AF | 14AF
14AG
14B
14J | 14J
14AF
11A
11A | IIIS
IIIS | 11T
7AN
11A
14F | 14F
14K
14K
12E | 11N
14P
14P | 140
Spec.
Spec.
14J | Spec.
14G
14R
14R | Spec.
Spec.
14J
14A | 146
14E
14S | 111
12A
12A | | H 9 | 1-20
1-20
/ | CFL
CFLA
CFLA
C8 | 000
FFF8
AAA | C.F. A
C.F. A
SS
SS | <u>ಜ</u> ್ವಜಜ | 80000
010
010
010 | 010
010
0.5
F. | 44400
0000 | 08
C.F.
P. P. P. | C8
FL A
C30 A Re
C FL | G30 A
C20
C20
C20 | C20
C20
C20
C | 040
000 | ပပပ | | 18-1/4 | 9-7/8
17-5/8
16-3/4
16-3/4 | 18-1/2
17-5/8
16-3/4
16-3/4 | 16-3/4
18-1/4
18-5/16
17-1/2 | 181/4
181/4
163/4
163/4 | 163/4
17-1/2
16-3/4
16-3/4 | 16-3/4
16-3/4
16-3/4
16-3/4 | 16-3/4
15-7/8
16-3/4
16-3/4 | 16.3/4
18-1/2
18-1/4
14-3/4 | 16-3/4
17-5/8
17-5/8
17-5/8 | 17-5/8
20-1/16
17-3/4
15-1/2 | 18-7/8
14-1/2
14-1/2
14-1/2 | 18-5/8
18-1/2
16-1/2
18-1/2 | 19-1/4
24-7/8
24
22 | 23-1/2
24-1/4
27-7/8 | | SAFP. | SAMP
SAGE
SAGE | SARP—
SATP—
SAWP—
SBP— | 58P_A
580P_
58FP_ | Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
S
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segue
Segu | SCAP_B
SGAP | ا ۱۱ ۱۲
الله الله الله الله الله الله الله الله | SE S | | 1 | 5YP
60P
7ACP
7AEP | 7AGP | 7XP
7YP
86P
106P | 12ACP
12RP
12GP | 12HP—
14AP—
20AP | Address inquiries to Manager of Sales, Industrial and Military Tube Division STREE PASSAIC, 118 NINTH **TESTING EQUIPMENT** Depicted at the left is a section of the Industrial-Military cathode-ray tube Test Department showing one of Thomas' test sets and a composite video signal generator. The test set was designed and built by Thomas Electronics for evaluating the electrical characteristics of electrostatic deflection cathode-ray tubes over a very wide range of operating conditions. Close-tolerance precision components, well-regulated power supplies and large-scale meters (accurate to within 0.5%) ensure precise measurements. The test set is capable of testing tubes according to MIL-E specifications. Similar test sets, employing advanced circuit design, are used by Thomas Electronics for testing magnetic deflection tubes. Test sets like the one shown on the left, and supplementary test equipment, are checked by Thomas' calibration laboratory in accordance with rigorous quality control schedules. Cathode-Ray Tube Test Set # PHOSPHOR and SCREEN DEVELOPMENT This is a section of Thomas' chemical laboratory showing a chemist and technician engaged in a phosphor screen development project. The lab is well equipped with up-to-date apparatus for complete analysis of tube and tube process materials, the formulation of materials and the preparation and evaluation of phosphors, phosphor screens and other tube coatings. While the main function of the laboratory is research as well as material and process development, it also works closely with production departments by chemically testing raw materials, issuing specifications for developmental tube type processes and troubleshooting shop problems. Corner Section of One of Thomas' Laboratories This brief summary of the THOMAS ELECTRONICS organization will acquaint you with our personnel, plant facilities and operation. We welcome the opportunity to discuss your prototype and production requirements in greater detail. Address all inquiries to: Jess E. Dines, Manager of Sales, Industrial and Military Tube Division of THOMAS ELECTRONICS, Inc., 118 NINTH STREET, PASSAIC, N. J., U.S.A. PRINTED IN U.S.A. NO. TI60-10M # **ABOUT THOMAS ELECTRONICS** Thomas Electronics, Inc., founded in 1949, was engaged initially in the design and manufacture of television picture tubes. In subsequent years, other product lines were added including cathode-ray tube component parts, industrial-military cathode-ray tubes and electronic equipment and cable assemblies. Advancements in automated production techniques (together with effective management, engineering, research and quality control facilities) have enabled Thomas Electronics to become one of the leading manufacturers of television cathode-ray tubes in the nation. Production capacity is presently in excess of 6,000 tubes a day. Headquarters in Passaic, New Jersey comprise a quarter-million-square-foot plant as well as manufacturing and warehouse facilities in St. Charles, Illinois; Cedartown, Georgia and Fort Worth, Texas. Overseas operations include manufacturing facilities in Australia and Italy. In the laboratories, research and development groups are engaged in advanced product development and the study of new material and design concepts. A substantial portion of the laboratory and industrial-military area is air-conditioned and humidity-controlled for critical processing operations. The necessary facilities for fabrication and testing of experimental electron guns and tubes are available, as well as equipment for development work on metal and phosphor film evaporation techniques. Research groups are supplemented by efficient production engineers, equipment design specialists and industrial and application engineers to bring new developments into full scale production with minimum delays. At the present time, particular emphasis is being placed on the enhancement of light output of cathode-ray tubes when operating on low voltages and high precision, high resolution, tube and electron gun designs. # **KEY PERSONNEL** ### KENNETH A. HOAGLAND Director of Engineering Mr. Hoagland holds the degrees of B.S. and M.S. in electrical engineering from Newark College of Engineering and has done graduate work in physics and mathematics at the Polytechnic Institute of Brooklyn and Stevens Institute of Technology. He is a Senior Member of the I.R.E., a member of the American Physical Society, A.I.E.E. and Tau Beta Pi. From 1941 to 1959 Mr. Hoagland was associated with the Allen B. DuMont Laboratories in various engineering capacities including Chief Engineer, Cathode-Ray Tube Division; Director of Color Tube Research and Development; and Director of Engineering, Tube Operations. He is responsible for a number of innovations in cathode-ray tube design, such as high sensitivity tubes for wide-band oscillography, precision mono-accelerator instrument tubes and an electron beam focusing lens presently in general use for television picture tubes. Mr. Hoagland is a former Chairman of the JEDEC Committee on Cathod-Ray Tubes, Electronic Industries Association. ### **PETER SEATS** Manager, Research and Development Mr. Seats was educated in Europe and Australia, joining Thomas Electronics in 1954 after serving six years as Chief Chemist in the Cathode-Ray Tube Division of E.M.I. Ltd., England. In the past ten years, he has been responsible for a number of significant improvements in cathode-ray tube efficiencies, particularly in the areas of screen applications and aluminizing. Mr. Seats' experience and original approach to design and development problems concerning cathode-ray tubes are exemplified by a recently concluded project involving the use of radioactive tracers. He holds 18 patents in the cathode-ray tube field. ## EDWARD LISOVICZ Manager, Industrial and Military Tube Division Mr. Lisovicz has a B.S. degree in electrical engineering from the Newark College of Engineering and is a member of Tau Beta Pi. He has been associated with Thomas Electronics since its inception in 1949 and has made a number of significant contributions to the company's growth in the areas of production and processing engineering. His diversified experience includes plant production supervision, cathode-ray tube manufacturing processes; development of electron gun production techniques, gun design, and control of plant shrinkage, using statistical inspection and quality control procedures. He holds several electron gun design patents. ### NICHOLAS E. BRODERICK Director of Quality Control and Field Engineering Mr. Broderick holds a B.S. degree in physics from Fordham University. He has done graduate work at both Fordham and Syracuse Universities in the fields of electronics, mathematics and nuclear physics. He is a Senior Member of the I.R.E., a former chairman of the engineering section of the Cathode-Ray Tube Manufacturers' Association, a member of the Joint Electron Devices Engineering Council and the American Physical Society. Before joining Thomas Electronics, Mr. Broderick was connected with Sylvania Electronics Products where his duties included the design and development of optical systems and electron guns. He holds several cathode-ray tube patents.